Транспортная задача в Microsoft Excel

Методы оптимальных решений. Транспортная задача в MS Excel

В этой статье мы пошагово рассмотрим, как решить транспортную задачу посредством функций MS Excel. Задачи данного типа изучаются студентами на таких дисциплинах, как исследование операций и методы оптимальных решений.

Условие

Есть некие предприятия и склады с грузом. Каждое предприятие, нуждается в определённом объёме нашего груза. Каждый склад доставляет тонну груза по собственному тарифу. Таким образом, нужно составить маршрут, по которому мы развезём объём груза, удовлетворяющий каждое предприятие, и при этом затратим меньше всего средств.

Так транспортная задача выглядит в своём наиболее общем и типовом виде.

С – это цена за тонну. X – это то, сколько мы привезём тонн со склада на предприятие. Например, если мы примем X11 равным 5, это будет значить, что со склада А1 к потребителю B1 мы повезём 5 тонн по цене C11. Вот нам и нужно как-то распределить всё так, чтобы потратить меньше всего денег.

Варианты решения

Транспортную задачу можно решить «вручную». Существует несколько подходов к её решению на бумаге. Среди них:

  • Метод опорного плана;
  • Метод минимального элемента;
  • Метод Фогеля.

Как правило, решая задачу одним из этих способов, вы получаете решение, находите потенциалы для него и понимаете, что в числе потенциалов есть положительные значения. Соответственно, это говорит о том, что вы нашли неверное решение. Далее вам нужно действовать, что называется, наугад. Вы переставляете различные цифры в таблице, пробуете разные варианты, словом, ищите решение методом «научного тыка». Далее снова пересчитываете потенциалы, и снова ничего не срастается.

Однозначного алгоритма, работающего безотказно в любых условиях, к сожалению, пока не придумали.

Однако для решения транспортной задачи или проверки полученного нами на бумаге результата, мы можем воспользоваться функционалом MS Excel.

Транспортная задача в Экселе

Для решения нам потребуется надстройка «Поиск решения». Возможно, она не будет активирована в вашем редакторе по умолчанию, поэтому, проделываем следующую очередность действий:

  • Жмём «Файл»;
  • В появившемся меню нажимаем по предпоследней кнопке «Параметры»;
  • Вновь находим предпоследний пункт «Надстройки» и переходим в «Управление»:

  • Ставим галочку в появившемся окне рядом с пунктов «Поиск решения» и жмём «ОК».

Поиск решения активирован. Далее он будет нами использован.

Пример задачи

На складах A1 — A4 есть суммарно 100 тонн зерна, и их нужно развести по текущим расценкам в пункты B1 – B3, потратив как можно меньше средств на доставку. Тарифы на доставку указаны в центре таблицы.

Шаг 1

Дублируем нашу таблицу в Excel.

Шаг 2

Рисуем другую таблицу.

Диапазон ячеек D12 – F15 заполняем единицами. Эти значения мы впоследствии будем изменять, чтобы найти самый дешёвый вариант перевозки. В диапазоне H12 – H15 должна быть сумма трёх единиц таблицы в строке D12 – F12, а в D17 – F17 – сумма четырёх единиц в столбце. Так напротив каждой строки и каждого столбца

Шаг 3

Рисуем третью таблицу, которая перемножит соответствующие ячейки первых двух таблиц.

Для этого выделяем диапазон 3 на 4 клетки, жмём на кнопку « = », выделяем диапазон D3-F6, жмём на клавиатуре « * », выделяем D12 – F15 и зажимаем сочетание клавиш Ctrl + Shift + Enter. Всё, вы перемножили значения.

Шаг 4

Теперь суммируем все значения последней таблицы. Для этого просто выберите произвольную свободную ячейку в MS Excel. Введите в неё « =СУММ( » и выделите третью таблицу. Нажмите Enter.

Шаг 5

Переходим во вкладку «Данные» и находим там «Поиск решения».

Щелкаем по данной кнопке. Далее всё делаем, как представлено на рисунке.

Описываю сверху вниз всё окно. Выберите целевую ячейку ту, которую мы сделали в 4-ом шаге нашего решения. Далее выберите минимум. В поле «Изменяя ячейки переменных» выберите диапазон, где мы проставили единицы. Выставляем ограничения. Значения, которые будут находиться вместо единиц, должны быть больше нуля и целыми, а потребности не должны превысить запасов. Жмём «Найти решение».

Получаем следующий результат.

Если вы всё сделали правильно, то у вас должно быть всё точно так же.

Заключение

По второй таблице сверху вы видите, сколько тонн и куда мы повезём. В третьей таблице вы видите, сколько это будет стоить. Например, мы повезём 30 тонн в B1 со склада A1 и 10 тонн со склада A3, так как спрос у пункта B1 равен 40. Аналогично и с другими пунктами.

Транспортная задача в Microsoft Excel

Транспортная задача представляет собой задачу поиска наиболее оптимального варианта перевозок однотипного товара от поставщика к потребителю. Её основой является модель, широко применяемая в различных сферах математики и экономики. В Microsoft Excel имеются инструменты, которые значительно облегчают решение транспортной задачи. Выясним, как их использовать на практике.

Читать еще:  Отключаем оповещения в Одноклассниках

Общее описание транспортной задачи

Главной целью транспортной задачи является поиск оптимального плана перевозок от поставщика к потребителю при минимальных затратах. Условия такой задачи записываются в виде схемы или матрицы. Для программы Excel используется матричный тип.

Если общий объем товара на складах поставщика равен величине спроса, транспортная задача именуется закрытой. Если эти показатели не равны, то такую транспортную задачу называют открытой. Для её решения условия следует привести к закрытому типу. Для этого добавляют фиктивного продавца или фиктивного покупателя с запасами или потребностями равными разнице между спросом и предложением в реальной ситуации. При этом в таблице издержек добавляется дополнительный столбец или строка с нулевыми значениями.

Инструменты для решения транспортной задачи в Эксель

Для решения транспортной задачи в Excel используется функция «Поиск решения». Проблема в том, что по умолчанию она отключена. Для того, чтобы включить данный инструмент, нужно выполнить определенные действия.

    Делаем перемещение во вкладку «Файл».

Кликаем по подразделу «Параметры».

В блоке «Управление», который находится внизу открывшегося окна, в выпадающем списке останавливаем выбор на пункте «Надстройки Excel». Делаем клик по кнопке «Перейти…».

Запускается окно активации надстроек. Устанавливаем флажок возле пункта «Поиск решения». Кликаем по кнопке «OK».

  • Вследствие этих действий во вкладке «Данные» в блоке настроек «Анализ» на ленте появится кнопка «Поиск решения». Она нам и понадобится при поиске решения транспортной задачи.
  • Пример решения транспортной задачи в Excel

    Теперь давайте разберем конкретный пример решения транспортной задачи.

    Условия задачи

    Имеем 5 поставщиков и 6 покупателей. Объёмы производства этих поставщиков составляют 48, 65, 51, 61, 53 единиц. Потребность покупателей: 43, 47, 42, 46, 41, 59 единиц. Таким образом, общий объем предложения равен величине спроса, то есть, мы имеем дело с закрытой транспортной задачей.

    Кроме того, по условию дана матрица затрат перевозок из одного пункта в другой, которая отображена на иллюстрации ниже зеленым цветом.

    Решение задачи

    Перед нами стоит задача при условиях, о которых было сказано выше, свести транспортные расходы к минимуму.

      Для того, чтобы решить задачу, строим таблицу с точно таким же количеством ячеек, как и у вышеописанной матрицы затрат.

    Выделяем любую пустую ячейку на листе. Кликаем по значку «Вставить функцию», размещенному слева от строки формул.

    Открывается «Мастер функций». В списке, который предлагает он, нам следует отыскать функцию СУММПРОИЗВ. Выделяем её и жмем на кнопку «OK».

    Открывается окно ввода аргументов функции СУММПРОИЗВ. В качестве первого аргумента внесем диапазон ячеек матрицы затрат. Для этого достаточно выделить курсором данные ячейки. Вторым аргументом выступит диапазон ячеек таблицы, которая была приготовлена для расчетов. Затем, жмем на кнопку «OK».

    Кликаем по ячейке, которая расположена слева от верхней левой ячейки таблицы для расчетов. Как и в прошлый раз вызываем Мастер функций, открываем в нём аргументы функции СУММ. Кликнув по полю первого аргумента, выделяем весь верхний ряд ячеек таблицы для расчетов. После того, как их координаты занесены в соответствующее поле, кликаем по кнопке «OK».

    Становимся в нижний правый угол ячейки с функцией СУММ. Появляется маркер заполнения. Жмем на левую кнопку мыши и тянем маркер заполнения вниз до конца таблицы для расчета. Таким образом мы скопировали формулу.

    Кликаем по ячейке размещенной сверху от верхней левой ячейки таблицы для расчетов. Как и в предыдущий раз вызываем функцию СУММ, но на этот раз в качестве аргумента используем первый столбец таблицы для расчетов. Жмем на кнопку «OK».

    Копируем маркером заполнения формулу на всю строку.

    Переходим во вкладку «Данные». Там в блоке инструментов «Анализ» кликаем по кнопке «Поиск решения».

    Открываются параметры поиска решения. В поле «Оптимизировать целевую функцию» указываем ячейку, содержащую функцию СУММПРОИЗВ. В блоке «До» устанавливаем значение «Минимум». В поле «Изменяя ячейки переменных» указываем весь диапазон таблицы для расчета. В блоке настроек «В соответствии с ограничениями» жмем на кнопку «Добавить», чтобы добавить несколько важных ограничений.

    Запускается окно добавления ограничения. Прежде всего, нам нужно добавить условие того, что сумма данных в строках таблицы для расчетов должна быть равна сумме данных в строках таблицы с условием. В поле «Ссылка на ячейки» указываем диапазон суммы в строках таблицы расчетов. Затем выставляем знак равно (=). В поле «Ограничение» указываем диапазон сумм в строках таблицы с условием. После этого, жмем на кнопку «OK».

    Аналогичным образом добавляем условие, что столбцы двух таблиц должны быть равны между собой. Добавляем ограничение, что сумма диапазона всех ячеек в таблице для расчета должна быть большей или равной 0, а также условие, что она должна быть целым числом. Общий вид ограничений должен быть таким, как представлен на изображении ниже. Обязательно проследите, чтобы около пункта «Сделать переменные без ограничений неотрицательными» стояла галочка, а методом решения был выбран «Поиск решения нелинейных задач методом ОПГ». После того, как все настройки указаны, жмем на кнопку «Найти решение».

    Читать еще:  Удаление лишних пробелов в Microsoft Excel
  • После этого происходит расчет. Данные выводятся в ячейки таблицы для расчета. Открывается окно результатов поиска решения. Если результаты вас удовлетворяют, жмите на кнопку «OK».
  • Как видим, решение транспортной задачи в Excel сводится к правильному формированию вводных данных. Сами расчеты выполняет вместо пользователя программа.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Решение транспортных задач ЛП в Excel

    На этой странице разберем подробные решения транспортной задачи (алгоритм и примеры разных типов) с использованием пакета электронных таблиц MS Excel (надстройка Поиск решения).

    Как решить транспортную задачу в Excel

    Ручное решение транспортной задачи занимает очень много времени и сил (скажем, даже для учебной задачи типа 3*5 решение может составлять от 4 до 10 страниц расчетов!). Тогда как решение в Эксель для задачи размерности как 3*3, так и 5*7 потребует буквально 10-15 минут и немного опыта (правда, если уже составлена математическая модель).

    Использовать можно любую версию программы – 2003, 2007, 2010 и так далее, главное, включить использование надстройки Поиск решения (интерфейс может немного отличаться в разных версиях).

    Алгоритм решения ТЗ в Эксель

    • Составить математическую модель транспортной задачи – то есть получить таблицу со стоимостью перевозок, запасами груза у поставщиков и потребностями потребителей (и, возможно, дополнительными ограничениями).
    • Если задача открытая (несбалансированная), то добавить потребителя или поставщика с нулевыми тарифами перевозки.
    • Внести на лист таблицы Excel данную модель в виде матрицы тарифов (затрат).
    • Создать рядом на листе еще одну таблицу, где будут выводиться искомые перевозки (такой же размерности, что и таблица тарифов). Просуммировать перевозки по строкам и столбцам (чтобы сравнивать с аналогичными ячейками – предельными ограничениями задачи – запасами поставщиков и потребностями потребителей).
    • Ввести в ячейку формулу, подсчитывающую суммарную стоимость перевозок (это число мы должны минимизировать по смыслу транспортной задачи)

      В режиме формул таблица будет выглядеть так:
    • Запустить надстройку Поиск решения и указать а) ячейку, которую мы минимизируем, б) все ограничения на запасы поставщиков и потребности потребителей, в) дополнительные ограничения (иногда бывают запреты перевозок или требования по минимальному объему груза между определенными пунктами, как в данном случае).
    • Получить решение транспортной задачи: в целевой ячейке вы увидите минимальную стоимость перевозок (в примере 435), а в таблице перевозок – искомые значения объема перевозимого груза (см. желтые ячейки).
    • Проанализировать решение, если требуется и записать более подробно, например

    Минимальные затраты на перевозку составят 435. План перевозок:
    Из 1 карьера 10 тонн везем на 1-й участок, 15 тонн на 3-й.
    Из 2 карьера 20 тонн везем на 1-й участок.
    Из 3 карьера 20 тонн везем на 3-й.
    Из 4 карьера 10 тонн везем на 1-й участок, 20 тонн на 2-й, 5 тонн на 3-й.

    Транспортные задачи: примеры в Excel

    Задача 1. Решить транспортную задачу вручную (методом потенциалов) и в программе Эксель.

    Задача 2. Исходные данные задачи приведены схематически: внутри прямоугольника заданы удельные транспортные затраты на перевозку единицы груза, слева указаны мощности поставщиков, а сверху – мощности потребителей.
    Сформулировать экономико-математическую модель исходной транспортной задачи, найти оптимальный план закрепления поставщиков за потребителями, установить единственность или не единственность оптимального плана, используя Поиск решений.

    Задача 3. Имеется 3 нефтеперерабатывающих завода, 4 спиртовых завода, 3 завода по производству синтетического каучука.
    Схема кооперационных связей (см. файл).
    Далее приведены производственные показатели предприятий.
    Также заданы расстояния между предприятиями.
    Необходимо найти решение транспортной задачи с ориентацией на спрос СК и минимизацией транспортных суммарных затрат.

    Задача 4. Используя метод потенциалов, решить транспортную задачу. Выполнить проверку, используя табличный редактор Microsoft Excel Компания владеет тремя заводами А1, А2, А3. Соответствующие объемы производства равны 600, 300 и 330 единиц продукции. Компания обязалась поставить в города В1, В2, В3 и В4 соответственно 350, 350, 230 и 300 единиц. При заданных в таблице стоимостях перевозок единицы продукции составьте план ее распределения, чтобы общая стоимость перевозок была наименьшей.

    Читать еще:  Состариваем фото в Фотошопе

    Задача 5. Свести задачу к виду ТЗ и решить с помощью надстройки «Поиск решения»
    Четыре ремонтные мастерские могут за год отремонтировать соответственно 400, 500, 450 и 550 машин при себестоимости ремонта одной машины в 500, 700, 650 и 600 рублей. Планируется годовая потребность в ремонте пяти автобаз: 550, 350, 300, 375 и 400 машин.
    Ремонт машин с 1 автобазы должен осуществляться в 100% случаев силами ремонтных мастерских.
    На 4 АБ возможно самостоятельное проведение ремонтных работ (бесплатное) в объеме, не превышающем 8% от планируемой годовой потребности этой мастерской. Платное (на стороне) – совсем не возможно.
    Вторая, третья и пятая АБ могут «ремонтироваться» на стороне, стоимость ремонта +трансп.расходы каждой машины в таком случае составит 695 руб.
    Дана матрица, характеризующая транспортные расходы на доставку машины с j-й автобазы в i-ю ремонтную мастерскую. Определить минимальную годовую потребность в кредитах на выполнение указанного объема работ по всем автобазам

    Решение транспортной задачи в Excel

    В этом материале попробуем разобраться, как решить транспортную задачу в Excel. Среда решения – Excel. Данный материал подходит для версий программы: 2007, 2010, 2013, 2016.

    Постановка задачи и подготовка таблиц

    Цель задачи сводится к математическому моделированию минимизации грузопотоков. Довольно часто студенты пишут рефераты на тему поиска решения транспортной задачи. Этот пример можно взять за основу реферата. Рассмотрим решение на конкретном примере.

    Задача

    В хозяйстве имеются 5 складов минеральных удобрений и 4 пункта, в которые необходимо доставить удобрения. Потребность каждого пункта в удобрениях различна, а так же запасы на каждом складе ограничены. Требуется определить, с какого склада, в какой пункт поставлять, сколько удобрений для минимализации грузооборота перевозок.

    Наличие минеральных удобрений (либо иной продукции) на складах.

    Склады Наличие удобрений, т.
    Склад № 1 200
    Склад № 2 190
    Склад № 3 220
    Склад № 4 145
    Склад № 5 280

    Потребность в минеральных удобрениях на различных пунктах.

    Пункты Потребность в удобрениях
    1 пункт 200
    2 пункт 150
    3 пункт 220
    4 пункт 330

    Расстояние между складами и пунктами доставки

    Пункт 1 Пункт 2 Пункт 3 Пункт 4
    Склад № 1 6 4 5 11
    Склад № 2 12 6 4
    Склад № 3 15 7 10 4
    Склад № 4 9 5 12 5
    Склад № 5 3 7 12 11

    Данные в таблицах. На пересечении столбца конкретного пункта доставки со строкой склада находится информация о расстоянии между этим пунктом доставки и складом. Например, расстояние между 3 пунктом и складом № 3 равно 10 километрам.

    Пошаговое решение в Excel

    Подготовим таблицы для решения задачи.

    Рисунок 1. Изменяемые ячейки.

    Значения ячеек в столбце B с третьей по седьмую определяют сумму значения соответствующих строк со столбца C до столбца F.

    Например, значение ячейки B3=СУММ(C4:F4)

    Аналогично значения в восьмой строке, складываются из суммы соответствующих столбцов. Далее создадим еще одну таблицу.

    Рисунок 2. Исходная информация в Excel

    В строке 16 по столбцам C-F определим грузооборот по каждому пункты доставки. Например, для пункта 1 (ячейка С16) это рассчитывается по формуле:

    Либо, это можно рассчитать с помощью функции СУММПРОИЗВ:

    В ячейке B4 находится количество минеральных удобрений, перевозимых со склада № 1 в 1 пункт доставки, а в ячейке C11 — расстояние от склада №1 до 1 пункта доставки. Соответственно первое слагаемое в формуле означает полный грузооборот по данному маршруту. Вся же формула вычисляет полный грузооборот перевозок минеральных удобрений в 1 пункт доставки.

    В ячейке B16 по формуле =СУММ(C16:F16) будет вычисляться общий объем грузооборота минеральных удобрений. Рабочий лист примет следующий вид.

    Рисунок 3. Рабочий лист, приготовленный для решения транспортной задачи.

    Для решения транспортной задачи воспользуемся процедурой Поиск решения, которая находится на вкладке Данные. Если у вас нет процедуры Поиск решения, необходимо зайти в Параметры Excel -> Надстройки — > Поиск решения.

    После выбора данной процедуры на вкладке Данные откроется диалоговое окно.

    Рисунок 4. Диалоговое окно Поиск решения.

    Выберем целевую ячейку $B$16, установим ее равной минимальному значению, что бы минимизировать значение конечной ячейки, путем изменения влияющих ячеек, изменяя ячейки, выберем диапазон с единицами $C$3:$F$7.

    Рисунок 5. Условия для решения транспортной задачи.

    Если запустить процесс, то мы получим параметры равные нулям. Для получения необходимых значений установим некоторые ограничения:

    После всех установок нажмем «Выполнить» и получаем результат.

    Ссылка на основную публикацию
    Adblock
    detector